LIVIEX

THE FINE WINE MARKET

Photo Upload API v1 documentation

LIVIEX

THE FINE WINE MARKET

Photo Upload API vl

Document revision 1.0
Date of Issue: 17 July 2020
Date of revision: 17 July 2020

Page 1 of 13

LIVIEX

Photo Upload API v1 documentation

THE FINE WINE MARKET

i & W NP

Table of Contents

PUIPOSEcciiiiiei e it et e e e et bbb bbbt b b e b e beaeseeeseae e e e et e e eeee et e e aaataaaaaeaaaaaeaaaaeaeaeaeaeaeaaaaaaaaaaaainnnnnnnnraarnrrres 3
L] Lo 3T T Ao (=] ¢ 1 L3 PRSPPI 3
TeChNICal STANAAIASooi ittt e e st e e e e e s e e e e e s b e e e e e e e nnree s 3
[[T A 5 =T Ve LT PO 3
PROTO UPIOAO APttt e e e e e et eeeeeeeeeeetab b e e eeeeeeeessabaa e aeeeeseesenbrnannanns 5
5.1 Add Photo Service (POST MEthOd)ooiiiiiiiiiii et e e e e et e e s e e e e e e e ee bbb s e eeeeeenens 5
5.2 Delete Photo Service (DELETE MEthod)couuniiiii et e e e 9
RESPONSE COUEScciiiiiiitiiie e e e ettt e e e e e et ettt et e e e e e e e e e aa et e e eeeeeeee e s et b eseeeseessssbaa e seeeseeesssbanannsans 12
6.1 RequEst Validation ErFOr COUES ...ttt bbbttt ettt e et e et et et et et e e e e e aaaaaaaaaaaaaaaaaaaaaaaaaaaans 12
6.2 HTTP SEATUS COUES ..ttt ettt ettt et e e e e e e e et e e e e aaaaaaaaaaaaaaaaaaaaaaaaaaaaanans 12

Page 2 of 13

LIVIEX

Photo Upload API v1 documentation

THE FINE WINE MARKET

1. Purpose

To provide the APl endpoint information and examples of the web services available for Exchange
Integration.

2. Glossary of Terms

Term

Meaning

LWIN

LWIN - the Liv-ex Wine Identification Number — serves as a universal wine
identifier for the wine trade. LWIN is a unique seven to eighteen-digit
numerical code that can be used to quickly and accurately identify a product.
LWIN allows wine companies to keep their preferred naming system, while
introducing a new universal code.

3. Technical Standards

Permitted users will be issued with a unique token (CLIENT_KEY) and password (CLIENT_SECRET)
combination to control the access for all the web services covered under Exchange Integration.
The web services will consume and produce both XML and JSON. The user can provide the
content type in the request header. If the user does not provide any information, then the
default content type will be JSON.
The project will support ISO 8601.
The project will only support HTTPS protocol for client and server communications.
The API’s will support the following methods:

1. POST for create operation

2. DELETE for delete operation
POST and DELETE services are one order at a time by default, but multiple orders and deletions
are possible.
Pretty printing for output readability only is supported if required
Compression for bandwidth savings are used
For HTTP users who can only work on GET & POST methods, we provide a Header ‘X-HTTP-
Method-Override’ for PATCH & DELETE
Authentication mechanism will be custom based on CLIENT_KEY and CLIENT_SECRET
The Orders API will be accessible at https://api.liv-ex.com/exchange

4. Request Header

This information will be used to authenticate valid access to the REST API. Each user will have to

provide the following information in the request header. Please note that the APl expects the 4 headers
as listed within this documentation and submitting a request with additional headers may lead to errors
and/or failed responses.

Param
Name Mandatory | Description
CLIENT_KEY Y A valid merchant GUID which will be unique for
each merchant.

Page 3 of 13

LIVIEX

THE FINE WINE MARKET

Photo Upload API v1 documentation

CLIENT_SECRET Y Password/Secret for the merchants CLIENT_KEY.

ACCEPT Y Accept header is a way for a client to specify the
media type of the response content it is expecting.
The values for the content type will be
application/json or application/xml.

If no/ invalid content type is found in the request,
then JSON format will be used by default.

CONTENT-TYPE Y for POST | Content-type is a way to specify the media type of
and DELETE | request being sent from the client to the server.
requests

The value for the content type will be
multipart/form-data for POST requests.

The values for the content type will be
application/json or application/xml for DELETE
requests.

If no/ invalid content type is found in the request,
then JSON format will be used by default.

Example header

POST

CLIENT_KEY: 12A34BC56-DE7F-89G0-H132345K678L
CLIENT_SECRET: dummy_password

ACCEPT: application/json

CONTENT-TYPE: multipart/form-data

DELETE

CLIENT_KEY: 12A34BC56-DE7F-89G0-H1J2345K678L
CLIENT_SECRET: dummy_password

ACCEPT: application/json

CONTENT-TYPE: application/json

Invalid header JSON response

{

"status": "Unauthorized",
"httpCode": "401",
"message": "Request was unsuccessful”,
"livexCode": "R0O00"
"apilnfo": {
"version": "1.0",
"timestamp": "2017-11-04T11:12:30",
"provider": "Liv-ex"

}

Invalid header XML response

Page 4 of 13

LIVIEX

THE FINE WINE MARKET

Photo Upload API v1 documentation

<Response>
<Status>Unauthorized</Status>
<HttpCode>401</Code>

<LivexCode>R001</LivexCode>
<Apilnfo>
<Version>1.0</Version>

<Provider>Liv-ex</Provider>
</Apilnfo>
<Response>

<Message>Request was unsuccessful.</Message>

<Timestamp>2017-11-04T11:12:30</Timestamp>

5. Photo Upload API

5.1 Add Photo Service (POST method)

Description

This service will be used to add photos that can be linked to special offers. The Photo Upload API

enables users to upload and delete photos.

A successful POST request will be response with a photoGUID values that would be recorded. This
photoGUID reference can be used to place a special order with photos via Orders v7 POST and
delete uploaded photo via Photo Upload DELETE.

Base URI
/photo/v1/photoUpload
Content Type
multipart/form-data

Request Parameters

Name Mandatory Description
photo Y Several files can be submitted in one request.
Maximum payload size is 20MB.
Type: .png, .jpeg and .jpg
An optisonal free text field that can be used to
reference N

attach a useful reference to the image files being
uploaded. Strings exceeding 300 characters will be
truncated.

Type: alphanumeric (max 300 characters)

Sample Response Body

| Name | Description

Page 5 of 13

LIVIEX

Photo Upload API v1 documentation

THE FINE WINE MARKET

photoGUID The GUID asigned to each uploaded photo. The photoGUID is
required when sending Orders v7 POST request for placing special
offers.

Type: 128-bit hexadecimal

Example: "43f4ac34d99f4637aeeela247aeal937"

. . r'sin file name.
inputFileName User's input file name

Type: alphanumeric

Reference provided in the request
reference

Type: alphanumeric

highResolutionPhotoUrl Link to a high resol.utlon photo
Type: alphanumeric

. Link to a low resolution photo
lowResolutionPhotoUrl P

Type: alphanumeric

expiryDate Type: alphanumeric, 1ISO 8601. Epoch time if JSON

JSON Response

"status": "OK",
"httpCode": "200",
"message": "Request completed successfully",
"internalErrorCode": "R001",
"apilnfo": {
"version": "1.0",
"timestamp": 1595000562875,
"provider": "Liv-ex"
2
"photoUpload": [
{
"photoGUID": "5c0ale4e00f141b491ebe2f405e086¢6",
"inputFileName": "14BRA750DOM_01.png",
"reference": "test 2",
"highResolutionPhotoUrl":
"https://dcoygdx2udjif.cloudfront.net/org/5c0ale4e00f141b491ebe2f405e086c6.png?Expires=1595004162&Signature
"lowResolutionPhotoUrl":
"https://dcoygdx2udjif.cloudfront.net/mod/5c0ale4e00f141b491ebe2f405e086¢6.png?Expires=1595004162&Signatur
e=lvW4S0xtvPx9 ",
"expiryDate": 1595138400000,
"errors": null
}
1
"errors": null

}

Multi-status JSON response

Page 6 of 13

LIVIEX

Photo Upload API v1 documentation
THE FINE WINE MARKET

"status": "Multi-Status",
"httpCode": "207",
"message": "Few requests were unsuccessful",
"internalErrorCode": "R002",
"apilnfo": {
"version": "1.0",
"timestamp": 1594975173598,
"provider": "Liv-ex"
2
"photoUpload": [
{

"photoGUID": "12ac6222e8d6404a8738105fc3285c66",

"inputFileName": "14BRA750DOM_01.png",

"reference": "test",

"highResolutionPhotoUrl":
"https://dcoygdx2udjif.cloudfront.net/org/12ac6222e8d6404a8738105fc3285c66.png?Expires=1594978773& Signature
=0QI9vBraCEuv- ",

"lowResolutionPhotoUrl":
"https://dcoygdx2udjif.cloudfront.net/mod/12ac6222e8d6404a8738105fc3285c66.png?Expires=1594978773&Signatur
e=ncWq-QvdrruGATQ ",

"expiryDate": 1595138400000,

"errors": null

"photoGUID": null,
"inputFileName": ""
"reference": "test",
"highResolutionPhotoUrl": null,
"lowResolutionPhotoUrl": null,
"expiryDate": null,
"errors": {
"error": [
{
"code": "V156",
"message": "Invalid file type: []. Supported types are ".png', ".jpeg' and ".jpg'."
}
]
}
}
1

"errors": null

’

}

XML Response

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<photoResponse>

<Status>OK</Status>

<HttpCode>200</HttpCode>

<Message>Request completed successfully</Message>

<InternalErrorCode>R001</InternalErrorCode>

<Apilnfo>
<Version>1.0</Version>
<Timestamp>2020-07-17T15:45:27.667Z</Timestamp>
<Provider>Liv-ex</Provider>

</Apilnfo>

<photoUpload>
<photoGUID>f79562ee2d27449eb19d1701dba9511c</photoGUID>
<inputFileName>10112471997 1.JPG</inputFileName>
<reference>XML Test</reference>

Page 7 of 13

LIVIEX

THE FINE WINE MARKET

Photo Upload API v1 documentation

<highResolutionPhotoUrl>https://dcoygdx2udjif.cloudfront.net/org/f79562ee2d27449eb19d1701dbad511c.JPG?Expire
s=1595004327&Signature=dM3s6uC64~s550DPD23YBqvClar9Krh7LSLbvHIqp6DtN6a9tBZ6EEGBa7mA-
RwildogC8fBOJDWJISzFOVD </highResolutionPhotoUrl>
<lowResolutionPhotoUrl>https://dcoygdx2udjif.cloudfront.net/mod/f79562ee2d27449eb19d1701dba9511c.JPG?Expir
es=1595004327&Signature=mf-3wby5whd4pMauaDef7wgWd7mw78gWIfGtPSzr7t1MyObVWPSyJK
</lowResolutionPhotoUrl>
<expiryDate>2020-07-19T06:00:00Z</expiryDate>

</photoUpload>

</photoResponse>

Invalid XML Response
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<photoResponse>
<Status>Multi-Status</Status>
<HttpCode>207</HttpCode>
<Message>Few requests were unsuccessful</Message>
<InternalErrorCode>R002</InternalErrorCode>
<Apilnfo>
<Version>1.0</Version>
<Timestamp>2020-07-17T15:46:42.654Z</Timestamp>
<Provider>Liv-ex</Provider>
</Apilnfo>
<photoUpload>
<photoGUID>c7b5a4ea8a4c428091e44d58732f24f4</photoGUID>
<inputFileName>10112471997 1.JPG</inputFileName>
<reference>XML Test</reference>

<highResolutionPhotoUrl>https://dcoygdx2udijif.cloudfront.net/org/c7b5adea8a4c428091e44d58732f24f4</highResol
utionPhotoUrl>

<lowResolutionPhotoUrl>https://dcoygdx2udjif.cloudfront.net/mod/c7b5a4ea8a4c428091e44d58732f24f4.)PG?Exp</I
owResolutionPhotoUrl>
<expiryDate>2020-07-19T06:00:00Z</expiryDate>
</photoUpload>
<photoUpload>
<inputFileName></inputFileName>
<reference>XML Test</reference>
<errors>
<error>
<code>V156</code>
<message>Invalid file type: []. Supported types are '.png', .jpeg' and '.jpg'.</message>
</error>
</errors>
</photoUpload>
</photoResponse>

Page 8 of 13

LIVIEX

THE FINE WINE MARKET

Photo Upload API v1 documentation

5.2 Delete Photo Service (DELETE method)

Description
This webservice will be used to delete photo(s) of a merchant.

Note: phtotoGUID is the resource identifier number returned when using the POST (upload) photo
upload service.

Base URI

/photo/v1/photoUpload

Parameters
Name Mandatory Description
photoGUID Y Valid photoGUID(s) which is not linked to any special

offers.
Type: 128-bit hexadecimal

Example: "43f4ac34d99f4637aeeela247aeal937"

Sample Request Body

JSON

{
"photoUpload": {
"photoGUID": ["441da267203f4d17921dc6fa874c7cfa", "504e14771cf047f287d1014f816eb126"]
}

}

XML

<photoUpload>
<photoGUID>3978d827111e47158708727082390332</photoGUID>
<photoGUID>ae96324a11b340148d1076ccf422e540</photoGUID>

</photoUpload>

Response parameters
Name Description

photoGUID Type: 128-bit hexadecimal
Example: "43f4ac34d99f4637aeeela247aeal937"

Sample Response Body

JSON Response

Multi-status JSON response

{
"status": "Multi-Status",
"httpCode": "207",
"message": "Few requests were unsuccessful”,
"internalErrorCode": "R002",
"apilnfo": {
"version": "1.0",
"timestamp": 1594971597041,
"provider": "Liv-ex"

L

Page 9 of 13

LIVIEX

THE FINE WINE MARKET

Photo Upload API v1 documentation

}

"photoUpload": [

{
"photoGUID": "441da267203f4d17921dc6fa874c7cfa",
"error": {
"code": "V148",
"message": "photoGUID [441da267203f4d17921dc6fa874c7cfa] does not exist or is already in use."
}
b
{
"photoGUID": "504e14771cf047f287d1014f816eb126",
"error": null
}
I
"errors": null

Invalid JSON response

{

"status": "Multi-Status",
"httpCode": "207",
"message": "Few requests were unsuccessful",
"internalErrorCode": "R002",
"apilnfo": {
"version": "1.0",
"timestamp": 1595001362772,
"provider": "Liv-ex"
2
"photoUpload": [
{
"photoGUID": "441da267203df7921dc6fa874c7cfa",
"error": {
"code": "V148",
"message": "photoGUID [441da267203df7921dc6fa874c7cfa] does not exist or is already in use."
}
}
1

"errors": null

Page 10 of 13

LIVIEX

THE FINE WINE MARKET

Photo Upload API v1 documentation

XML Response

Multi-status XML response
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<photoResponse>
<Status>Multi-Status</Status>
<HttpCode>207</HttpCode>
<Message>Few requests were unsuccessful</Message>
<InternalErrorCode>R002</InternalErrorCode>
<Apilnfo>
<Version>1.0</Version>
<Timestamp>2020-07-17T07:40:26.726Z</Timestamp>
<Provider>Liv-ex</Provider>
</Apilnfo>
<photoUpload>
<photoGUID>3978d827111e47158708727082390332</photoGUID>
<error>
<code>V148</code>
<message>photoGUID [3978d827111e47158708727082390332] does not exist or is already in use.</message>
</error>
</photoUpload>
<photoUpload>
<photoGUID>437b48f876d24bbf955f31c6d4c536ad</photoGUID>
</photoUpload>
<photoUpload>
<photoGUID>ae96324a11b340148d1076ccf422e540</photoGUID>
<error>
<code>V148</code>
<message>photoGUID [ae96324a11b340148d1076ccf422e540] does not exist or is already in use.</message>
</error>
</photoUpload>
</photoResponse>

Invalid XML response

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<photoResponse>
<Status>Multi-Status</Status>
<HttpCode>207</HttpCode>
<Message>Few requests were unsuccessful</Message>
<InternalErrorCode>R002</InternalErrorCode>
<Apilnfo>
<Version>1.0</Version>
<Timestamp>2020-07-17T15:57:52.091Z</Timestamp>
<Provider>Liv-ex</Provider>
</Apilnfo>
<photoUpload>
<photoGUID>3978d827111e47158708727082390332</photoGUID>
<error>
<code>V148</code>
<message>photoGUID [3978d827111e47158708727082390332] does not exist or is already in use.</message>
</error>
</photoUpload>
</photoResponse>

Page 11 of 13

LIVIEX

THE FINE WINE MARKET

Photo Upload API v1 documentation

6. Response Codes

This section describes the response codes that will be returned by the Exchange
Integration services.

Code Message

R0O00 Request was unsuccessful
ROO1 Request completed successfully
R002 Request partially completed

6.1 Request validation error codes

Code Message
V148 photoGUID [${v}] does not exist or is already in use.
V156 Invalid file type: [%s]. Supported types are '.png', ".jpeg' and ".jpg'.

6.2 HTTP Status codes

HTTP defines a bunch of meaningful status codes that can be returned from our API. These can
be leveraged to help our APl Merchants/consumers route their responses accordingly:

Code Message

200 OK Response to a successful GET, POST, PUT, DELETE. Can also
be used for a POST that doesn't result in a creation.

201 Created Response to a POST that results in a creation.

202 Accepted The request has been accepted and will be processed later.
It is a classic answer to asynchronous calls (for better UX or
performances).

204 No Content Response to a successful request that won't be returning a

body (like a DELETE request)

400 Bad Request The request is malformed, such as if the body does not
parse
401 Unauthorized When no and/or invalid authentication details are

provided. Can also be used to trigger an auth popup if APl is
used from a browser

403 Forbidden When authentication succeeded but authenticated user
doesn't have access to the resource

404 Not Found When a non-existent resource is requested

405 Method Not Allowed When an HTTP method is being requested that isn't
allowed for the authenticated user

Page 12 of 13

LIVIEX

THE FINE WINE MARKET

Photo Upload API v1 documentation

406 Not Acceptable Nothing matches the Accept-* Header of the request. As an
example, you ask for an XML formatted resource but it is
only available as JSON.

409 Conflict Indicates one or more supplied parameters are triggering a
validation error. A relevant TR code should be returned in
the response.

410 Gone Indicates that the resource at this end point is no longer
available. Useful as a blanket response for old API versions

413 Payload Too Large If payload exceeds 20 MB.

415 Unsupported Media Type If incorrect content type was provided as part of the
request.

422 Unprocessable Entity Used for validation errors. Should be used if the server

cannot process the entity, e.g. if an image cannot be
formatted or mandatory fields are missing in the payload.

429 Too Many Requests When a request is rejected due to rate limiting

500 Internal Server Error The general catch-all error when the server-side throws an
exception. The request may be correct, but an execution
problem has been encountered at our end.

Page 13 of 13

	1. Purpose
	2. Glossary of Terms
	3. Technical Standards
	4. Request Header
	5. Photo Upload API
	5.1 Add Photo Service (POST method)
	5.2 Delete Photo Service (DELETE method)

	6. Response Codes
	6.1 Request validation error codes
	6.2 HTTP Status codes

